Home
Class 12
MATHS
If I=int(log(cosx))/(cos^(2)x), then I e...

If `I=int(log(cosx))/(cos^(2)x)`, then I equals a)`tanxlogcosx+tanx-x+C` b)`tanxlogcosx-tanx+x^(2)+C` c)`tanxlogcosx-cotx+x+C` d)`tanxlogcosx+cotx-x+C`

A

`tanxlogcosx+tanx-x+C`

B

`tanxlogcosx-tanx+x^(2)+C`

C

`tanxlogcosx-cotx+x+C`

D

`tanxlogcosx+cotx-x+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int(sqrt(cotx)-sqrt(tanx))dx , then I equals

int( d x)/(sin ^(2) x cos ^(2) x) equals a) tan x+cot x+C b) tan x-cot x+C c) tan x cot x+C d) tan x-cot 2 x+C

int( sin ^2 x-cos ^2 x)/(sin ^2 x cos ^2 x) d x is equal to a) tan x+cot x+C b) tan x+cosec x+C c) -tan x+cot x+C d) tan x+sec x+C

If int(cos4x+1)/(cotx-tanx)dx=Acos4x+B , then

int(2x + sin 2x)/(1 + cos 2x)dx is equal to a) x + log |tan x| + C b) x log|tan x| + C c) x tan x + C d) x + tan x + C

int( e^x(1+x))/(cos ^2(e^x x)) d x equals a) -cot (e x^x)+ C b) tan (x e^x)+C c) tan (e^x)+C d) cot (e^x)+C

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x

int( cos 2 x)/(sin x+cos x)^2 d x is equal to a) -1/(sin x+cos x)+C b) log |sin x+cos x|+C c) log |sin x-cos x|+C d) 1(sin x+cos x)^2

int(1-tan^(2)x)dx is equal to a) tanx+C b) secx+C c) 2x-secx+C d) 2x-tanx+C

If x in((pi)/(2),pi) , then (secx-1)/(secx+1) is equal to a) (cosecx+cotx)^(2) b) (sinx-cosx)^(2) c) (cosecx-cotx)^(2) d) (secx+tanx)^(2)