Home
Class 12
MATHS
inte^(-x)(1-tanx)secxdx is equal to a)e^...

`inte^(-x)(1-tanx)secxdx` is equal to a)`e^(-x)secx+c` b)`e^(-x)tanx+c` c)`-e^(-x)tanx+c` d)`-e^(-x)secx+c`

A

`e^(-x)secx+c`

B

`e^(-x)tanx+c`

C

`-e^(-x)tanx+c`

D

`-e^(-x)secx+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

inte^(x){logsinx+cotx}dx is equal to : a) e^(x)cotx+c b) e^(x)logsinx+c c) e^(x)logsinx+tanx+c d) e^(x)+sinx+c

int e^(-x) cosec x(1+ cot x) dx is equal to a) e^(-x) cosec x + C b) -e^(-x) cosec x + C c) - e^(-x) ( cosec x + cot x ) + C d) - e^(-x) ( cosec x - tan x ) + C

int (dx)/(e^(x)+e^(-x)+2) is equal to

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int(e^(-x))/(1+e^(x))dx=

int(1-tan^(2)x)dx is equal to a) tanx+C b) secx+C c) 2x-secx+C d) 2x-tanx+C

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C