Home
Class 12
MATHS
If I=inte^(-x)log(e^(x)+1)dx, then I equ...

If `I=inte^(-x)log(e^(x)+1)dx`, then I equals a)`x+(e^(-x)+1)log(e^(x)+1)+C` b)`x+(e^(x)+1)log(e^(x)+1)+C` c)`x-(e^(-x)+1)log(e^(x)+1)+C` d)None of these

A

`x+(e^(-x)+1)log(e^(x)+1)+C`

B

`x+(e^(x)+1)log(e^(x)+1)+C`

C

`x-(e^(-x)+1)log(e^(x)+1)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(-x))/(1+e^(x))dx=

int e^(x log a ) e^(x) dx is equal to :

If I=int_(1//e)^(e)|logx|(dx)/(x^(2)) , then I equals a)2 b) 2//e c) 2(1-1//e) d)0

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c

int 1/x(log_(ex)e)dx is equal to

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C

int e^(-x) cosec x(1+ cot x) dx is equal to a) e^(-x) cosec x + C b) -e^(-x) cosec x + C c) - e^(-x) ( cosec x + cot x ) + C d) - e^(-x) ( cosec x - tan x ) + C