A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Similar Questions
Explore conceptually related problems
Recommended Questions
- Let inte^(x){f(x)-f'(x)}dx=phi(x). Then inte^(x)*f(x)dx is a)phi(x)+e^...
Text Solution
|
- int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx is ...
Text Solution
|
- int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is
Text Solution
|
- if x=phi(t) and int f(x)dx=F(x) then int f(phi(t))phi'(t)dt=(A)phi(x)(...
Text Solution
|
- Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), t...
Text Solution
|
- The value of int(f(x)phi\'(x)+phi(x)f\'(x))/((f(x)*phi(x)+1)sqrt(phi(x...
Text Solution
|
- Let inte^(x){f(x)-f'(x)}dx=phi(x). then, inte^(x)f(x)dx is equal to
Text Solution
|
- Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...
Text Solution
|
- int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x)){ ln phi(x)-lnf(x)}dx is eq...
Text Solution
|