Home
Class 12
MATHS
inte^(tanx)(sinx-secx)dx, is equal to a...

`inte^(tanx)(sinx-secx)dx`, is equal to `a)`e^(tanx)*cosx+C` b)`e^(tanx)*sinx+C` c)`-e^(tanx)*cosx+C` d)`e^(tanx)*secx+C`

A

`e^(tanx)*cosx+C`

B

`e^(tanx)*sinx+C`

C

`-e^(tanx)*cosx+C`

D

`e^(tanx)*secx+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(ln(tanx))/(sinx*cosx)dx , is equal to

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

inte^(x){logsinx+cotx}dx is equal to : a) e^(x)cotx+c b) e^(x)logsinx+c c) e^(x)logsinx+tanx+c d) e^(x)+sinx+c

int e^(-x) cosec x(1+ cot x) dx is equal to a) e^(-x) cosec x + C b) -e^(-x) cosec x + C c) - e^(-x) ( cosec x + cot x ) + C d) - e^(-x) ( cosec x - tan x ) + C

int(1-tan^(2)x)dx is equal to a) tanx+C b) secx+C c) 2x-secx+C d) 2x-tanx+C

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

int{1+2tanx(tanx+secx)}^(1//2)dx=

int(secx+tanx)^(2)dx=