Home
Class 12
MATHS
int(sin^(2)x*sec^(2)x+2tanx*sin^(-1)x*sq...

`int(sin^(2)x*sec^(2)x+2tanx*sin^(-1)x*sqrt(1-x^(2)))/(sqrt(1-x^(2))(1+tan^(2)x))dx=`a)`(cos^(2)x)(sin^(-1)x)+C` b)`(sin^(2)x)(sin^(-1)x)+C` c)`(sec^(2)x)(cos^(-1)x)+C` d)`(sec^(2)x)(tan^(-1)x)+C`

A

`(cos^(2)x)(sin^(-1)x)+C`

B

`(sin^(2)x)(sin^(-1)x)+C`

C

`(sec^(2)x)(cos^(-1)x)+C`

D

`(sec^(2)x)(tan^(-1)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2

Evaluate int tan (sin ^(-1) x)/(sqrt(1-x^2)) d x

Prove : tan^-1x=sec^-1sqrt(1+x^2) .

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

The integral int(sin2x(1-(3)/(2)cosx)dx)/(e^(sin^(2)x+cos^(3)x))= a) e^(sin^(2)x+cos^(3)x)+C b) -e^(-(sin^(2)x+cos^(3)x))+C c) e^(-(sin^(2)x+cos^(3)x)^(2))+C d)None of these

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Show that f(x)=2sin^-1x

int((2x+1))/((x^(2)+4x+1)^(3//2))dx= a) (x^(3))/((x^(2)+4x+1)^(1//2))+C b) (x)/((x^(2)+4x+1)^(1//2))+C c) (x^(2))/((x^(2)+4x+1)^(1//2))+C d) (1)/((x^(2)+4x+1)^(1//2))+C