Home
Class 12
MATHS
int{(logx-1)/(1+(logx)^(2))}^(2)dx is eq...

`int{(logx-1)/(1+(logx)^(2))}^(2)dx` is equal to a)`(logx)/((logx)^(2)+1)+c` b)`(x)/(x^(2)+1)+c` c)`(xe^(x))/(1+x^(2))+c` d)`(x)/((logx)^(2)+1)+c`

A

`(logx)/((logx)^(2)+1)+c`

B

`(x)/(x^(2)+1)+c`

C

`(xe^(x))/(1+x^(2))+c`

D

`(x)/((logx)^(2)+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(logx)/((1+logx)^(2))dx .

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C

int(1)/(x(logx))dx=

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to a) 1/2(ln((x-1)/(x+1)))^(2)+C b) 1/2(ln((x+1)/(x-1)))^(2)+C c) 1/4(ln((x-1)/(x+1)))^(2)+C d) 1/4(ln((x+1)/(x-1)))

int (1)/( x ^(2)( x ^(4) + 1 )^((3)/(4))) dx is equal to a) -((x^4+1)/(x^4))^(1/4)+c b) -((x^4+1)/(2x))^(1/4)+c c) -((x^4+1)/(x))^(1/4)+c d) -((x^4+1)/(x^2))^(1/4)+c