Home
Class 12
MATHS
If intf(x)dx=Psi(x), then intx^(5)f(x^(3...

If `intf(x)dx=Psi(x)`, then `intx^(5)f(x^(3))dx` is equal to a)`1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c` b)`1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c` c)`1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c` d)`1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c`

A

`1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c`

B

`1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c`

C

`1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c`

D

`1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3))/(x+1)dx is equal to

intx^(3)d(tan^(-1)x) is equal to

int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int3x^(2)(x^(3)+1)^(10)dx=

Find intx^2/(1-x^6)dx

int(1+2x+3x^(2)+4x^(3)+ . . .)dx=

Find int (x-1)/((x-2)(x-3))dx

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c