Home
Class 12
MATHS
Let I(n)=inttan^(n)xdx,(ngt1).I(4)+I(6)=...

Let `I_(n)=inttan^(n)xdx,(ngt1).I_(4)+I_(6)=atan^(5)x+bx^(5)+C`, where C is a constant of integration, then the ordered pair (a,b) is equal to

A

`(-1/5,0)`

B

`(-1/5,1)`

C

`(1/5,0)`

D

`(1/5,-1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4)tan^(n)xdx , then (1)/(I_(3)+I_(5)) is

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

The value of Sigma_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)=-1 , is equal to