Home
Class 12
MATHS
If int(0)^(1)(e^(-x)dx)/(1+e^(x))=log(1...

If `int_(0)^(1)(e^(-x)dx)/(1+e^(x))=log(1+e)+K`, then find the value of K.

Text Solution

Verified by Experts

The correct Answer is:
`K=-((1)/(e)+log2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(-x))/(1+e^(x))dx=

If int(log_(e)(1+sin^(2)x))/(cos^(2)x)dx=f(x)+C , then the value of f(0) is a)0 b)1 c)2 d)3

int(1)/((e^(x)+e^(-x))^(2))dx=

Evaluate int_0^1e^(-5x)dx .

If e[(e^(x),e^(y)),(e^(y),e^(x))]=[(1,1),(1,1)] , then the values of x and y are respectively

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

Evaluate int(1)/(1+e^(-x))dx .