Home
Class 12
MATHS
If x=int(0)^(y)(dt)/(sqrt(1+9t^(2)))" an...

If `x=int_(0)^(y)(dt)/(sqrt(1+9t^(2)))" and "(d^(2)y)/(dx^(2))=ay`, then find a.

Text Solution

Verified by Experts

The correct Answer is:
9
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d^2y)/(dx^2) y=tan^(-1)x

Find (d^2y)/(dx^2) y=x^2+3x+2

Find (d^2y)/dx^2, if y=x^3+tanx

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then the value of g'(0) is a)1 b)17 c) sqrt(17) d)None of these

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt for xgt0 , then

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

The value of int_(0)^(a)(dx)/(x+sqrt((a^(2)-x^(2)))) is

Evaluate int(1)/(x^(2)sqrt(1+x^(2)))dx .

If y=cos ^(-1) x find (d^2y)/(dx^2) in terms of y alone.