Home
Class 12
MATHS
If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))s...

If `f(pi)=2` and `int_(0)^(pi)(f(x)+f''(x))sinx dx=5` then `f(0)` is equal to, (it is given that f(x) is continuous in `[0,pi]`)

A

7

B

4

C

3

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)f(sinx)dx , then A is equal to a)0 b) pi c) (pi)/(4) d) 2pi

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

Let f(x)= {(cosx,0lexlec),(sinx,c Find the value of c if f is continuous on [0,pi] .

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If f(x) is differentiable and int_(0)^(t^(2))xf(x)dx=(2)/(5)t^(5) , then f((4)/(25)) equals