Home
Class 12
MATHS
If I(1)=int(x)^(1)(1)/(1+t^(2))dt and I(...

If `I_(1)=int_(x)^(1)(1)/(1+t^(2))dt` and `I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt` for `xgt0`, then

A

`I_(1)=I_(2)`

B

`I_(1)gtI_(2)`

C

`I_(2)gtI_(1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If I_(1)=int_(-100)^(101)(dx)/((5+2x-2x^(2))(1+e^(2-4x))) and I_(2)=int_(-100)^(101)(dx)/(5+2x-2x^(2)) , then I_(1)//I_(2) is a)2 b) 1/2 c)1 d) -1/2

int_(0)^(1)(dx)/((x^(2)+1)^(3//2))=