Home
Class 12
MATHS
The value of the integral int(0)^(log5)(...

The value of the integral `int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx` is

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(-x))/(1+e^(x))dx=

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is a)0 b)1 c)2 d)None of these

The value of the integral int_(0)^(1)e^(x^(2))dx lies in the interval a) (0,1) b) (-1,0) c) (1,e) d)None of these

Evaluate int(e^(x))/(sqrt(4-e^(2x)))dx

The value of the integeral int _(1) ^(e) (1 + log x )/( 3x) dx is equal to

Find the integrals int(4 e^(3x)+1) d x

int sqrt(e^(x)-1) dx is equal to :

int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx=

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to