Home
Class 12
MATHS
If I(1)=int(e)^(e^(2))(dx)/(logx) and I(...

If `I_(1)=int_(e)^(e^(2))(dx)/(logx)` and `I_(2)=int_(1)^(2)(e^(x))/(x)dx` then

A

`I_(1)=I_(2)`

B

`2I_(1)=I_(2)`

C

`I_(1)=2I_(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/((e^(x)+e^(-x))^(2))dx=

int(e^(-x))/(1+e^(x))dx=

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

Find int ((x^2+1) e^x)/(x+1)^2 dx