Home
Class 12
MATHS
int(0)^(2pi)e^(x/2)sin(x/2+pi/4)dx= a)2p...

`int_(0)^(2pi)e^(x/2)sin(x/2+pi/4)dx=` a)`2pi` b)`e^(pi)` c)0 d)`2sqrt(2)`

A

`2pi`

B

`e^(pi)`

C

0

D

`2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/3) e^-x sin x d x

int_-(pi/2)^(pi/2) x sin x d x

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

int_(0)^(sqrt(pi)//2) 2x^(3)"sin"(x^(2))dx is equal to

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

The value of int_(-pi)^(pi)("sin"^(2)x)/(1+7^(x))dx is a) 7^(x) b) pi c) (pi)/(2) d) 2^(pi)