Home
Class 12
MATHS
int(a+c)^(b+c)f(x)dx is equal to...

`int_(a+c)^(b+c)f(x)dx` is equal to

A

`int_(1)^(b)f(x-c)dx`

B

`int_(a)^(b)f(x+c)dx`

C

`int_(a)^(b)f(x)dx`

D

`int_(a-c)^(b-c)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(ac)^(bc)f(x)dx is equal to , (c!=0)

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

Let f(x)=(sin^(2)pix)/(1+pi^(x)) Then, int(f(x)+f(-x))dx is equal to :a)0 b) x+c c) x/2-(cospix)/(2pi)+c d) x/2-(sin2pix)/(4pi)+c