Home
Class 12
MATHS
The value of the integral int(-pi)^(pi)s...

The value of the integral `int_(-pi)^(pi)sinmxsinnxdx` for `m!=n(m,n inI)` is a)0 b)`pi` c)`pi//2`d)`2pi`

A

0

B

`pi`

C

`pi//2`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

Evaluate the following: int_(-pi/2)^(pi/2)sin^7xdx

int_-(pi/2)^(pi/2) x sin x d x

The value of int_((-pi)/2)^(pi/2) cosxdx

Evaluate int_(-pi/2)^(pi/2)cosxdx

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

Evaluate the following integrals: int_0^(pi/4) sin2xdx

The value of the integral int _(0) ^(pi/2) (cos x )/( 1 + sin ^(2) x ) dx is

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is a)0 b)1 c)2 d)None of these

Evaluate int_(-pi//2)^(pi//2)|sinx|dx .