Home
Class 12
MATHS
The value of the integral int(0)^(pi)log...

The value of the integral `int_(0)^(pi)log(1+cosx)dx` is a)`(pi)/(2)log2` b)`-pilog2` c)`pi log2` d)None of these

A

`(pi)/(2)log2`

B

`-pilog2`

C

`pi log2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^pilog(1+cosx)dx

The value of the integral int _(0) ^((pi)/(2)) log theta d theta is

The value of the integral int _(0) ^(pi/2) (cos x )/( 1 + sin ^(2) x ) dx is

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

int_(0)^(pi)abs(cosx)dx is equal to :

The value of int_(0)^(oo)log(x+1//x)(dx)/(1+x^(2)) is a) pilog2 b) 2pilog2 c) -pilog2 d) -2pilog2

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is a)0 b)1 c)2 d)None of these

Evaluate int_0^(pi/2) log(tanx)dx

The value of the definite integral int _(0) ^(2pi) sqrt (1 + sin "" (x)/(2))dx is