Home
Class 12
MATHS
If f(x) is continuous for all real value...

If `f(x)` is continuous for all real values of x then `sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx` is equal to a)`int_(0)^(n)f(x)dx` b)`int_(0)^(1)f(x)dx` c)`nint_(0)^(1)f(x)dx` d)`(n-1)int_(0)^(1)f(x)dx`

A

`int_(0)^(n)f(x)dx`

B

`int_(0)^(1)f(x)dx`

C

`nint_(0)^(1)f(x)dx`

D

`(n-1)int_(0)^(1)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a+c)^(b+c)f(x)dx is equal to

int_(-1)^(1)x(1-x)(1+x)dx is equal to

int_(ac)^(bc)f(x)dx is equal to , (c!=0)

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

int_0^af(a-x)dx =..... a) int_0^(2a)f(x)dx b) int_-a^af(x)dx c) int_0^af(x)dx d) int_a^0f(x)dx

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to