Home
Class 12
MATHS
If f(x) and g(x) are continuous in [0,a]...

If `f(x)` and `g(x)` are continuous in [0,a] satisfying `f(x)=f(a-x)` and `g(x)+g(a-x)=a` then `int_(0)^(a)f(x)g(x)dx=` a)`aint_(0)^(a//2)f(x)dx` b)`a/2int_(0)^(a)f(x)dx` c)`-aint_(0)^(a)f(x)dx` d)None of these

A

`aint_(0)^(a//2)f(x)dx`

B

`a/2int_(0)^(a)f(x)dx`

C

`-aint_(0)^(a)f(x)dx`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

int_0^af(a-x)dx =..... a) int_0^(2a)f(x)dx b) int_-a^af(x)dx c) int_0^af(x)dx d) int_a^0f(x)dx

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If f(a+b-x) = f(x), then int_a^b xf(x) dx =

If intg(x)dx=g(x) , then intg(x){f(x)+f'(x)}dx is equal to

Let f(x) be a function,then int_0^af(x)dx =?