Home
Class 12
MATHS
Let u=int(0)^(pi//2)cos((2pi)/(3)sin^(2)...

Let `u=int_(0)^(pi//2)cos((2pi)/(3)sin^(2)x)dx` and `v=int_(0)^(pi//2)cos(pi/3sinx)dx`, then the relation between u and v is a)`2u=v` b)`2u=3v` c)`u=v` d)`u=2v`

A

`2u=v`

B

`2u=3v`

C

`u=v`

D

`u=2v`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to

int_0^(pi/2)frac(sinx)(sinx+cosx)dx

Prove that int_0^(pi//2)sin^2x/(sinx+cosx)dx=int_0^(pi//2)(cos^2x)/(sinx+cosx)dx .

int_(0)^(sqrt(pi)//2) 2x^(3)"sin"(x^(2))dx is equal to

int_-(pi/2)^(pi/2) x sin x d x

Evaluate int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)