Home
Class 12
MATHS
The value of int(0)^(npi+t)(|cosx|+|sinx...

The value of `int_(0)^(npi+t)(|cosx|+|sinx|)dx,t in[0,pi//2]` is a)`4n-sint-cost-1` b)`4n-sint-cost+1` c)`4n+sint-cost+1` d)`-4n+sint-cost-1`

A

`4n-sint-cost-1`

B

`4n-sint-cost+1`

C

`4n+sint-cost+1`

D

`-4n+sint-cost-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

The value of n for which int_(0)^(pi//2)x^(n)sinxdx=(3)/(4)(pi^(2)-8) is

The value of int_(-pi//2)^(pi//2)sqrt(cos^(2n-1)x-cos^(2n+1)x)dx,n in N , is a) (4)/(2n+1) b) (1)/(2n+1) c) (2)/(2n+1) d) (1)/(2(2n+1))

The value of the integral int_(-pi)^(pi)sinmxsinnxdx for m!=n(m,n inI) is a)0 b) pi c) pi//2 d) 2pi

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)f(sinx)dx , then A is equal to a)0 b) pi c) (pi)/(4) d) 2pi

The solution of int_(sqrt2)^(x) (dt)/(t sqrt( t^2 -1) )= (pi)/(12) is a)1 b)2 c)3 d)4