Home
Class 12
MATHS
Let f be integrable over [0,a] for any r...

Let f be integrable over [0,a] for any real a. If we define `I_(1)=int_(0)^(pi//2)costhetaf(sintheta+cos^(2)theta)d theta` and `I_(2)=int_(0)^(pi//2)sin 2theta f(sin theta+cos^(2)theta)d theta`. then

A

`I_(1)=I_(2)`

B

`I_(1)=-I_(2)`

C

`I_(1)=2I_(2)`

D

`I_(1)=-2I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin2theta)/(1+cos2theta)=tantheta

Prove that (sin2theta)/(1-cos2theta)=cottheta

inte^(sintheta)[logsintheta+cosec^(2)theta] costheta d theta is equal to

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

int ((sin theta +cos theta ))/(sqrt(sin 2 theta)) d theta is equal to :

Evaluate int_(-pi//2)^(pi//2)log((a-sintheta)/(a+sintheta))d theta,agt0 .

Solve costheta+cos3theta-2cos2theta=0 .