Home
Class 12
MATHS
If int(0)^(x)f(t)dt=x+int(x)^(1)tf(t)dt,...

If `int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt`, then the value of f(1) is

A

`1//2`

B

0

C

1

D

`-1//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is

If int_(0)^(x^(2))f(t)dt=xcospix , then the value of f(4) is :a)1 b) 1/4 c)-1 d) (-1)/4

If f (x)= int _(1) ^(x) sin ^(2) ((t)/(2)) dt, then the value of lim _(x to 0) (f (pi +x ) -f (pi))/(x) is equal to

If f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,AA x in R^(+) then the value of f(e^(2))-f((1)/(e^(2))) is a)0 b) pi/2 c) pi d) 2pi

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e

If int_(-1)^(4)f(x)dx=4" and "int_(2)^(4)(3-f(x))dx=7 , then find the value of int_(2)^(-1)f(x)dx is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle3 . Then the range of f(x) is a) [0,2] b) [-1/4,4] c) [-1/4,2] d)None of these