Home
Class 12
MATHS
If f(x)=cosx-int(0)^(x)(x-t)f(t)dt, then...

If `f(x)=cosx-int_(0)^(x)(x-t)f(t)dt`, then `f''(x)+f(x)` is equal to a)`-cosx` b)`-sinx` c)`int_(0)^(x)(x-t)f(t)dt` d)0

A

`-cosx`

B

`-sinx`

C

`int_(0)^(x)(x-t)f(t)dt`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)="sin"^(-1)((1-"cos"2x)/(2"sin"x)) , then |f'(x)| is equal t o

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is

If f(x)= (x+1)/(x-1) then the value of f(f(x)) is equal to a)x b)0 c)-x d)1

If f(x) = int_0^x tsint dt , then find f^'(x)

If f(x)=int_(2x)^(sinx)cos(t^(3))dt then f'(x) is equal to a) cos(sin^(3)x)cosx-2cos(8x^(3)) b) sin(sin^(3)x)sinx-2sin(8x^(3)) c) cos(cos^(3)x)cosx-2cos(x^(3)) d) cos(sin^(3)x)-cos(8x^(3))

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e