Home
Class 12
MATHS
Let f(x)=int(2)^(x)(dt)/(sqrt(1+t^(4))) ...

Let `f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)))` and g be the inverse of f. Then the value of `g'(0)` is a)1 b)17 c)`sqrt(17)` d)None of these

A

1

B

17

C

`sqrt(17)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=int_(0)^(y)(dt)/(sqrt(1+9t^(2)))" and "(d^(2)y)/(dx^(2))=ay , then find a.

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle3 . Then the range of f(x) is a) [0,2] b) [-1/4,4] c) [-1/4,2] d)None of these

If f(x)=int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx , and f(0)=0 , then the value of f(1) is a) -1//2 b) 1//4 c) 1//2 d) -1//4

If A=int_(0)^(1)(dx)/(sqrt(1+x^(4))) and B=pi//4 , then a) A=B b) A=2B c) AltB d) AgtB

If int_(0)^(x^(2))f(t)dt=xcospix , then the value of f(4) is :a)1 b) 1/4 c)-1 d) (-1)/4

Let f(x+1/y)+f(x-1/y)=2 f(x)f(1/y)AAxy in R, y ne 0 and f(0) = 0 then the value of f(1) + f(2) = a) -1 b)0 c)1 d)none of these

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,AA x in R^(+) then the value of f(e^(2))-f((1)/(e^(2))) is a)0 b) pi/2 c) pi d) 2pi