Home
Class 12
MATHS
If int(0)^(1)(e^(t))/(1+t)dt=a then int(...

If `int_(0)^(1)(e^(t))/(1+t)dt=a` then `int_(0)^(1)(e^(t))/((1+t)^(2))dt` is equal to

A

`a-1+(e)/(2)`

B

`a+1-(e)/(2)`

C

`a-1-(e)/(2)`

D

`a+1+(e)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

If int_(1)^(2)e^(x^(2))dx=a , then int_(e)^(e^(4))sqrt(lnx)dx is equal to

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt for xgt0 , then

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, where x in(0,(pi)/(2)) , then find the value of f((1)/(sqrt(3))) .

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is