Home
Class 12
MATHS
Let (d)/(dx)F(x)=(e^(sinx))/(x),xgt0. If...

Let `(d)/(dx)F(x)=(e^(sinx))/(x),xgt0`. If `int_(1)^(4)(3)/(x)e^(sinx^(3))dx=F(k)-F(1)`,
then one of the possible value of k is

A

15

B

64

C

63

D

64

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x^(2)-4)/(x^(4)+9x^(2)+16)dx=tan^(-1)f(x)+C , then the value of f(4) is a)3 b)4 c)5 d)6

If int(log_(e)(1+sin^(2)x))/(cos^(2)x)dx=f(x)+C , then the value of f(0) is a)0 b)1 c)2 d)3

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

If int_(-1)^(4)f(x)dx=4" and "int_(2)^(4)(3-f(x))dx=7 , then find the value of int_(2)^(-1)f(x)dx is

lim_(xrarr0)(e^(sinx)-1)/x

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, where x in(0,(pi)/(2)) , then find the value of f((1)/(sqrt(3))) .

If y=int_(x^(2))^(x^(3))(1)/(logt) dt(where xgt0 ), then find (dy)/(dx) .