Home
Class 12
MATHS
The value of the integal int(3)^(6)(sqrt...

The value of the integal `int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx` is

A

`1//2`

B

`3//2`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))dx=

int_(2016)^(2017) sqrt(x)/(sqrt(x)+sqrt(4033-x)) dx is equal to

Evaluate the following int(dx)/(x+sqrt(x))

int(sqrt(x-1))/(xsqrt(x+1))dx is equal to

If f(x)=cos(tan^(-1)x) , then the value of the intgral int_(0)^(1)xf''(x)dx is a) (3-sqrt(2))/(2) b) (3+sqrt(2))/(2) c)1 d) 1-(3)/(2sqrt(2))

Evaluate int_(pi/6)^(pi/3) sqrt(sin x)/(sqrt(sin x)+sqrt(cos x)) d x

int(x^(5//2))/(sqrt(1+x^(7)))dx is

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)