Home
Class 12
MATHS
int(0)^(pi)xf(sinx)dx is equal to...

`int_(0)^(pi)xf(sinx)dx` is equal to

A

`piint_(0)^(pi)(cosx)dx`

B

`piint_(0)^(pi)f(sinx)dx`

C

`pi/2int_(0)^(pi//2)f(sinx)dx`

D

`piint_(0)^(pi//2)f(cosx)dx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)abs(cosx)dx is equal to :

If f(x)=tanx-tan^(3)x+tan^(5)x-…" to "infty with 0 lt x ltpi/4 , then int_(0)^(pi/4)f(x)dx is equal to :

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

int_(ac)^(bc)f(x)dx is equal to , (c!=0)

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to