Home
Class 12
MATHS
The value of int(0)^(1)(8log(1+x))/(1+x^...

The value of `int_(0)^(1)(8log(1+x))/(1+x^(2))dx` is

A

`log2`

B

`pilog2`

C

`pi/8log2`

D

`pi/2log2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo)log(x+1//x)(dx)/(1+x^(2)) is a) pilog2 b) 2pilog2 c) -pilog2 d) -2pilog2

The value of int_(0)^(oo)(xlnx)/((1+x^(2))^(2))dx is a) oo b) 1//2 c)2 d)0

The value of int_(0)^(2) (x^(2))/((x^(3)+1)^(2)) dx is equal to

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of inte^(tan^(-1)x)((1+x+x^(2)))/((1+x^(2)))dx is

The value of the integral int_(0)^(1)e^(x^(2))dx lies in the interval a) (0,1) b) (-1,0) c) (1,e) d)None of these

Find the value of int_(0)^(1)3sqrt(2x^(3)-3x^(2)-x+1)dx .