Home
Class 12
MATHS
For x in(0,(5pi)/(2)), define f(x)=int(0...

For `x in(0,(5pi)/(2))`, define `f(x)=int_(0)^(x)sqrt(t)sin t` dt. Then f has

A

local maximum at `pi` and local minima at `2pi`

B

local maximum at `pi` and `2pi`

C

local minimum at `pi` and `2pi`

D

local minimum at `pi` and local maximum at `2pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_0^x tsint dt , then find f^'(x)

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle3 . Then the range of f(x) is a) [0,2] b) [-1/4,4] c) [-1/4,2] d)None of these

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2)) then a)f(x) has exactly one point of minima b)f(x) has exactly one point of maxima c)f(x) is increasing in (0, (pi)/(2)) . d)f(x) is decreasing in (0, (pi)/(2)) .

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, where x in(0,(pi)/(2)) , then find the value of f((1)/(sqrt(3))) .

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is