Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)tdt, then g(x+p...

If `g(x)=int_(0)^(x)cos^(4)tdt`, then `g(x+pi)` equals

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g(pi)`

D

`g(x)*g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)tdt , then g(x+pi) is equal to a) g(x)+g(pi) b) g(x)-g(pi) c) g(x).g(pi) d) (g(x))/(g(pi))

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

If f(pi)=2 and int_(0)^(pi)(f(x)+f''(x))sinx dx=5 then f(0) is equal to, (it is given that f(x) is continuous in [0,pi] )

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

int x^(4)e^(x^(5)) cos (e^(x^(5)))dx is equal to

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to