Home
Class 12
MATHS
Statement I : The value of the integral ...

Statement I : The value of the integral
`int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx))` is equal to `pi/6`
Statement II :
`int_(a)^(b)f(x)dx=int_(a)^(b)(a+b-x)dx`

A

Statement I is true , statement II is true , statement II is a correct explanation for statement I

B

Statement I is true , statement II is true , statement II is not a correct explanation for statement I.

C

Statement I is true, statement II is false.

D

Statement I false , statement II is true.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(pi/6)^(pi/3) dx/(1+sqrttanx)

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx is

int_(pi/6)^(pi/3) 1/(1+sqrt(cot x ))d x

Evaluate int_(pi/6)^(pi/3)frac(dx)(1+sqrttanx)dx

int_(pi//4)^(3pi//4) (x)/(1+sin x)dx=

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

The value of the integral int_(0) ^(1) (x ^(3))/( 1 + x ^(8)) dx is equal to

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to