Home
Class 14
MATHS
What is the remainder when (5555)^(2222)...

What is the remainder when `(5555)^(2222)+(2222)^(5555)` is divided by 7 ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the remainder when \( (5555)^{2222} + (2222)^{5555} \) is divided by 7, we can follow these steps: ### Step 1: Find the remainder of 5555 when divided by 7. To do this, we can perform the division: \[ 5555 \div 7 = 793 \quad \text{(quotient)} \] Calculating \( 7 \times 793 \): \[ 7 \times 793 = 5551 \] Now, subtract this from 5555 to find the remainder: \[ 5555 - 5551 = 4 \] Thus, \( 5555 \equiv 4 \mod 7 \). ### Step 2: Find the remainder of 2222 when divided by 7. Similarly, we divide: \[ 2222 \div 7 = 317 \quad \text{(quotient)} \] Calculating \( 7 \times 317 \): \[ 7 \times 317 = 2219 \] Now, subtract this from 2222 to find the remainder: \[ 2222 - 2219 = 3 \] Thus, \( 2222 \equiv 3 \mod 7 \). ### Step 3: Rewrite the expression using the remainders. Now we can rewrite the original expression using the remainders we found: \[ (5555)^{2222} + (2222)^{5555} \equiv (4)^{2222} + (3)^{5555} \mod 7 \] ### Step 4: Calculate \( 4^{2222} \mod 7 \). Using Fermat's Little Theorem, since 7 is prime: \[ a^{p-1} \equiv 1 \mod p \] For \( a = 4 \) and \( p = 7 \): \[ 4^{6} \equiv 1 \mod 7 \] Now, we need to find \( 2222 \mod 6 \) (since \( 6 = 7-1 \)): \[ 2222 \div 6 = 370 \quad \text{(quotient)} \] Calculating \( 6 \times 370 = 2220 \): \[ 2222 - 2220 = 2 \] Thus, \( 2222 \equiv 2 \mod 6 \). Therefore: \[ 4^{2222} \equiv 4^{2} \mod 7 \] Calculating \( 4^{2} \): \[ 4^{2} = 16 \quad \text{and} \quad 16 \mod 7 = 2 \] So, \( 4^{2222} \equiv 2 \mod 7 \). ### Step 5: Calculate \( 3^{5555} \mod 7 \). Again using Fermat's Little Theorem: \[ 3^{6} \equiv 1 \mod 7 \] Now, we need to find \( 5555 \mod 6 \): \[ 5555 \div 6 = 925 \quad \text{(quotient)} \] Calculating \( 6 \times 925 = 5550 \): \[ 5555 - 5550 = 5 \] Thus, \( 5555 \equiv 5 \mod 6 \). Therefore: \[ 3^{5555} \equiv 3^{5} \mod 7 \] Calculating \( 3^{5} \): \[ 3^{5} = 243 \quad \text{and} \quad 243 \mod 7 = 5 \] So, \( 3^{5555} \equiv 5 \mod 7 \). ### Step 6: Combine the results. Now we can combine the results: \[ (5555)^{2222} + (2222)^{5555} \equiv 2 + 5 \mod 7 \] Calculating: \[ 2 + 5 = 7 \quad \text{and} \quad 7 \mod 7 = 0 \] ### Final Answer: The remainder when \( (5555)^{2222} + (2222)^{5555} \) is divided by 7 is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Practice Exercise (Foundation Level)|65 Videos
  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Standard Level |45 Videos
  • MOCK TEST 2

    DISHA PUBLICATION|Exercise Multiple Choice Questions|20 Videos
  • PERCENTAGES

    DISHA PUBLICATION|Exercise PRACTICE EXERCISE (TEST YOURSELF)|15 Videos