Home
Class 14
MATHS
Find the last two digits of 54^(380)....

Find the last two digits of `54^(380)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the last two digits of \(54^{380}\), we can use modular arithmetic, specifically modulo \(100\). Here’s a step-by-step solution: ### Step 1: Factor the base We start by factoring \(54\): \[ 54 = 2 \times 3^3 \] So we can rewrite \(54^{380}\) as: \[ 54^{380} = (2 \times 3^3)^{380} = 2^{380} \times 3^{1140} \] ### Step 2: Calculate \(2^{380} \mod 100\) To find \(2^{380} \mod 100\), we can use the Chinese Remainder Theorem (CRT). We will calculate \(2^{380} \mod 4\) and \(2^{380} \mod 25\). - **Calculate \(2^{380} \mod 4\)**: \[ 2^{380} \equiv 0 \mod 4 \] - **Calculate \(2^{380} \mod 25\)**: Using Euler's theorem, since \(\phi(25) = 20\): \[ 2^{20} \equiv 1 \mod 25 \] Now, we find \(380 \mod 20\): \[ 380 \div 20 = 19 \quad \text{(remainder 0)} \] Thus, \[ 2^{380} \equiv (2^{20})^{19} \equiv 1^{19} \equiv 1 \mod 25 \] ### Step 3: Combine results using CRT We have: \[ 2^{380} \equiv 0 \mod 4 \] \[ 2^{380} \equiv 1 \mod 25 \] Let \(x\) be the solution. We can set up the system of congruences: 1. \(x \equiv 0 \mod 4\) 2. \(x \equiv 1 \mod 25\) To solve this, we can express \(x\) in terms of \(25\): \[ x = 25k + 1 \] Substituting into the first congruence: \[ 25k + 1 \equiv 0 \mod 4 \] Calculating \(25 \mod 4\): \[ 25 \equiv 1 \mod 4 \] So we have: \[ k + 1 \equiv 0 \mod 4 \implies k \equiv 3 \mod 4 \] Let \(k = 4m + 3\). Substituting back: \[ x = 25(4m + 3) + 1 = 100m + 76 \] Thus, \[ x \equiv 76 \mod 100 \] ### Step 4: Calculate \(3^{1140} \mod 100\) Next, we calculate \(3^{1140} \mod 100\) using CRT again. - **Calculate \(3^{1140} \mod 4\)**: \[ 3 \equiv -1 \mod 4 \implies 3^{1140} \equiv (-1)^{1140} \equiv 1 \mod 4 \] - **Calculate \(3^{1140} \mod 25\)**: Using Euler's theorem, since \(\phi(25) = 20\): \[ 3^{20} \equiv 1 \mod 25 \] Now, find \(1140 \mod 20\): \[ 1140 \div 20 = 57 \quad \text{(remainder 0)} \] Thus, \[ 3^{1140} \equiv (3^{20})^{57} \equiv 1^{57} \equiv 1 \mod 25 \] ### Step 5: Combine results using CRT for \(3^{1140}\) We have: \[ 3^{1140} \equiv 1 \mod 4 \] \[ 3^{1140} \equiv 1 \mod 25 \] Thus, \[ 3^{1140} \equiv 1 \mod 100 \] ### Step 6: Combine \(2^{380}\) and \(3^{1140}\) Now, we combine the results: \[ 54^{380} = 2^{380} \times 3^{1140} \equiv 76 \times 1 \equiv 76 \mod 100 \] ### Final Answer The last two digits of \(54^{380}\) are: \[ \boxed{76} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Practice Exercise (Foundation Level)|65 Videos
  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Standard Level |45 Videos
  • MOCK TEST 2

    DISHA PUBLICATION|Exercise Multiple Choice Questions|20 Videos
  • PERCENTAGES

    DISHA PUBLICATION|Exercise PRACTICE EXERCISE (TEST YOURSELF)|15 Videos