Home
Class 14
MATHS
(0.bar1)^(2)[1-9(0.bar(16))^(2)]=?...

`(0.bar1)^(2)[1-9(0.bar(16))^(2)]=?`

A

`-1/(162)`

B

`1/(108)`

C

`7696/(106)`

D

`833/(88209)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.\overline{1})^2[1 - 9(0.\overline{16})^2]\), we will follow these steps: ### Step 1: Convert the repeating decimals to fractions 1. **Convert \(0.\overline{1}\)**: Let \(x = 0.\overline{1}\). Then, \(10x = 1.\overline{1}\). Subtracting these gives: \[ 10x - x = 1 \Rightarrow 9x = 1 \Rightarrow x = \frac{1}{9} \] Thus, \(0.\overline{1} = \frac{1}{9}\). 2. **Convert \(0.\overline{16}\)**: Let \(y = 0.\overline{16}\). Then, \(100y = 16.\overline{16}\). Subtracting gives: \[ 100y - y = 16 \Rightarrow 99y = 16 \Rightarrow y = \frac{16}{99} \] Thus, \(0.\overline{16} = \frac{16}{99}\). ### Step 2: Substitute the fractions into the expression Now substitute these values into the original expression: \[ (0.\overline{1})^2 = \left(\frac{1}{9}\right)^2 = \frac{1}{81} \] \[ (0.\overline{16})^2 = \left(\frac{16}{99}\right)^2 = \frac{256}{9801} \] ### Step 3: Substitute into the equation Now substitute these back into the expression: \[ \frac{1}{81} \left[ 1 - 9 \left( \frac{256}{9801} \right) \right] \] ### Step 4: Simplify the expression inside the brackets Calculate \(9 \times \frac{256}{9801}\): \[ 9 \times \frac{256}{9801} = \frac{2304}{9801} \] Now substitute this back: \[ 1 - \frac{2304}{9801} = \frac{9801 - 2304}{9801} = \frac{7497}{9801} \] ### Step 5: Multiply by \(\frac{1}{81}\) Now multiply: \[ \frac{1}{81} \times \frac{7497}{9801} = \frac{7497}{81 \times 9801} \] Calculating \(81 \times 9801\): \[ 81 \times 9801 = 793581 \] Thus, we have: \[ \frac{7497}{793581} \] ### Final Result The final result is: \[ \frac{7497}{793581} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Standard Level |45 Videos
  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Expert Level |32 Videos
  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • MOCK TEST 2

    DISHA PUBLICATION|Exercise Multiple Choice Questions|20 Videos
  • PERCENTAGES

    DISHA PUBLICATION|Exercise PRACTICE EXERCISE (TEST YOURSELF)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate 3.bar(2)-0.bar(16)

If z_(1),z_(2),z_(3) are three complex numbers such that 5z_(1)-13z_(2)+8z_(3)=0, then prove that [[z_(1),(bar(z))_(1),1z_(2),(bar(z))_(2),1z_(3),(bar(z))_(3),1]]=0

Evaluate 2.bar(6)+0.bar(9)

If (bar(a)+bar(b))*(bar(a)+bar(b))=|bar(a)|^(2)+|bar(b)|^(2),bar(a)!=0,bar(b)!=0 , then

Express each of the following decimals in the form (p)/(q) , where p,q are integers and q ne 0 . (i) 0.bar(2) (ii) 0.bar(53) (iii) 2.bar(93) (iv) 18.bar(48) (v) 0.bar(235) (vi) 0.00bar(32) (vii) 1.3bar(23) (viii) 0.3bar(178) (ix) 32.12bar(35) (x) 0.40bar(7)

2.bar(6)-0.bar(82) is equal to

DISHA PUBLICATION-NUMBER SYSTEM-Practice Exercise (Foundation Level)
  1. When a number divided by 9235, we get the quotient 888 and the reamind...

    Text Solution

    |

  2. A number which when divided by 32 leaves a remainder of 29. If this nu...

    Text Solution

    |

  3. (0.bar1)^(2)[1-9(0.bar(16))^(2)]=?

    Text Solution

    |

  4. There is one number which is formed by writing one digit 6 times (e.g....

    Text Solution

    |

  5. Product of divisors of 7056 is :

    Text Solution

    |

  6. The first 23 natural numbers are written in increasing order beside ea...

    Text Solution

    |

  7. How many positive integer values of 'a' are possible such that (a+220)...

    Text Solution

    |

  8. The sum and number of even factors of 2450.

    Text Solution

    |

  9. Find the sum of divisors of 544 which are perfect squares.

    Text Solution

    |

  10. Find the number of zeroes in: 100^(1)xx99^(2)xx98^(3)xx97^(4)xx….xx1...

    Text Solution

    |

  11. (23)(5)+(47)(9)=(?)(8)

    Text Solution

    |

  12. LCM of first 100 natural numbers is N. What is the LCM of first 105 na...

    Text Solution

    |

  13. N! is completely divisible by 13^(52). What is sum of the digits of th...

    Text Solution

    |

  14. A two digit number is divided by the sum of its digits. What is the ma...

    Text Solution

    |

  15. 12^(55)//3^(11)+8^(48)//16^(18) will give the digit at units place as

    Text Solution

    |

  16. The unit digit in the expression 36^(234)"*"33^(512)"*"39^(180)-54^(...

    Text Solution

    |

  17. The last digit of the LCM of (3^(2003)-1)and(3^(2003)+1) is

    Text Solution

    |

  18. The persons start walking together and their steps measure 40 cm, 42 c...

    Text Solution

    |

  19. The sum of first n odd numbers (i.e., 1+3+5+7+…+2n-1) is divisible by ...

    Text Solution

    |

  20. Which of the following is/are true? (i) 43^(3)-1 is divisible by 11 ...

    Text Solution

    |