Home
Class 14
MATHS
Find the last two digit of (545454)^(380...

Find the last two digit of `(545454)^(380)`

A

a) `01`

B

b) 67

C

c) 76

D

d) 34

Text Solution

AI Generated Solution

The correct Answer is:
To find the last two digits of \( (545454)^{380} \), we need to calculate \( (545454)^{380} \mod 100 \). ### Step 1: Simplify the Base First, we simplify \( 545454 \mod 100 \): \[ 545454 \mod 100 = 54 \] So, we need to calculate \( 54^{380} \mod 100 \). ### Step 2: Use Euler's Theorem To apply Euler's theorem, we first need to find \( \phi(100) \): \[ 100 = 2^2 \times 5^2 \] Using the formula for Euler's totient function: \[ \phi(100) = 100 \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{5}\right) = 100 \times \frac{1}{2} \times \frac{4}{5} = 40 \] Since \( \gcd(54, 100) = 2 \neq 1 \), we cannot directly use Euler's theorem. Instead, we can use the Chinese Remainder Theorem. ### Step 3: Calculate \( 54^{380} \mod 4 \) and \( 54^{380} \mod 25 \) #### Calculate \( 54^{380} \mod 4 \): \[ 54 \mod 4 = 2 \] \[ 2^{380} \mod 4 = 0 \quad (\text{since } 2^2 = 0 \mod 4) \] #### Calculate \( 54^{380} \mod 25 \): Next, we calculate \( 54 \mod 25 \): \[ 54 \mod 25 = 4 \] Now we need to find \( 4^{380} \mod 25 \). We can use Euler's theorem here since \( \gcd(4, 25) = 1 \): \[ \phi(25) = 25 \left(1 - \frac{1}{5}\right) = 20 \] Now we reduce the exponent \( 380 \mod 20 \): \[ 380 \mod 20 = 0 \] Thus, \( 4^{380} \mod 25 = 1 \) (since \( 4^{20} \equiv 1 \mod 25 \)). ### Step 4: Solve the System of Congruences Now we have the two congruences: 1. \( x \equiv 0 \mod 4 \) 2. \( x \equiv 1 \mod 25 \) We can solve this system using the method of substitution. Let \( x = 25k + 1 \) for some integer \( k \): \[ 25k + 1 \equiv 0 \mod 4 \] Calculating \( 25 \mod 4 \): \[ 25 \equiv 1 \mod 4 \] So, we have: \[ k + 1 \equiv 0 \mod 4 \implies k \equiv -1 \equiv 3 \mod 4 \] Let \( k = 4m + 3 \) for some integer \( m \): \[ x = 25(4m + 3) + 1 = 100m + 76 \] Thus, \( x \equiv 76 \mod 100 \). ### Conclusion The last two digits of \( (545454)^{380} \) are \( \boxed{76} \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    DISHA PUBLICATION|Exercise Expert Level |32 Videos
  • MOCK TEST 2

    DISHA PUBLICATION|Exercise Multiple Choice Questions|20 Videos
  • PERCENTAGES

    DISHA PUBLICATION|Exercise PRACTICE EXERCISE (TEST YOURSELF)|15 Videos

Similar Questions

Explore conceptually related problems

Find the last two digits of 64^81

Find the last two digits of 2^(543) .

Find the last two digits of 54^(380) .

Find the last digit of 2^(35) .

Find the last two digits of (3^(1997))

Find the last two digits of 64^(236) .

Find the last two digits of 56^(283) .

Find the last two digits of 64^(586) .

Find the last two digits of 78^(379) .

The last two digits of 3^(400) is