Home
Class 14
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt(x^(2)-3x+2))` is

A

`(-oo, 1)`

B

`(-oo, 1) cup (2, oo)`

C

`(-oo, 1] cup [ 2, oo)`

D

`(2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{x^2 - 3x + 2}} \), we need to ensure that the expression under the square root is positive, since the square root of a negative number is not defined in the real number system, and the denominator cannot be zero. ### Step-by-step solution: 1. **Identify the expression under the square root:** \[ x^2 - 3x + 2 \] 2. **Set the expression greater than zero:** \[ x^2 - 3x + 2 > 0 \] 3. **Factor the quadratic expression:** \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] 4. **Determine where the product is greater than zero:** We need to find the intervals where \( (x - 1)(x - 2) > 0 \). The critical points are \( x = 1 \) and \( x = 2 \). 5. **Test intervals around the critical points:** - For \( x < 1 \): Choose \( x = 0 \): \[ (0 - 1)(0 - 2) = 1 \cdot 2 = 2 > 0 \quad \text{(True)} \] - For \( 1 < x < 2 \): Choose \( x = 1.5 \): \[ (1.5 - 1)(1.5 - 2) = 0.5 \cdot (-0.5) = -0.25 < 0 \quad \text{(False)} \] - For \( x > 2 \): Choose \( x = 3 \): \[ (3 - 1)(3 - 2) = 2 \cdot 1 = 2 > 0 \quad \text{(True)} \] 6. **Combine the intervals where the product is positive:** The expression \( (x - 1)(x - 2) > 0 \) holds true for: \[ (-\infty, 1) \cup (2, \infty) \] 7. **Conclusion:** Therefore, the domain of the function \( f(x) \) is: \[ (-\infty, 1) \cup (2, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Foundation Level)|39 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/sqrt(9-x^2) is

The domain of the function f(x)=sqrt(x^(2)) is :

The domain of the function f(x)=sqrt(x^(2)) is :

The domain of the function f(x) = (1)/(sqrt(9 - x^(2))) is

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

Find the domain of the function f(x)=sqrt(x^(2)-3x+2)

The domain of the function f(x)=1/sqrt((5-x)(x-2)) is

The domain of the function f(x)=log(1-x)+sqrt(x^(2)-1)is3 is

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)