Home
Class 14
MATHS
If f(x)=x^(2)-x+1, then find the inverse...

If `f(x)=x^(2)-x+1`, then find the inverse of the f (x)

A

`(x-(1)/(2))`

B

`sqrt(x-(3)/(4))+(1)/(2)`

C

`sqrt(x-(3)/(4))-(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x^2 - x + 1 \), we will follow these steps: ### Step 1: Set the function equal to \( y \) We start by letting \( y = f(x) \): \[ y = x^2 - x + 1 \] ### Step 2: Rearrange the equation Next, we rearrange the equation to express it in terms of \( x \): \[ x^2 - x + (1 - y) = 0 \] This is a quadratic equation in \( x \). ### Step 3: Identify coefficients In the quadratic equation \( ax^2 + bx + c = 0 \), we identify: - \( a = 1 \) - \( b = -1 \) - \( c = 1 - y \) ### Step 4: Use the quadratic formula We apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (1 - y)}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{1 \pm \sqrt{1 - 4(1 - y)}}{2} \] ### Step 5: Simplify the expression under the square root Now, simplify the expression under the square root: \[ x = \frac{1 \pm \sqrt{1 - 4 + 4y}}{2} \] \[ x = \frac{1 \pm \sqrt{4y - 3}}{2} \] ### Step 6: Write the inverse function Thus, we have two possible expressions for \( x \): \[ x = \frac{1 + \sqrt{4y - 3}}{2} \quad \text{or} \quad x = \frac{1 - \sqrt{4y - 3}}{2} \] We can express the inverse function as: \[ f^{-1}(y) = \frac{1 \pm \sqrt{4y - 3}}{2} \] ### Step 7: Finalize the inverse function Since \( f(x) \) is a quadratic function that opens upwards, it is not one-to-one over all real numbers. Therefore, we typically restrict the domain to ensure that the inverse is a function. We can choose: \[ f^{-1}(y) = \frac{1 + \sqrt{4y - 3}}{2} \] This is the principal branch of the inverse function. ### Summary The inverse of the function \( f(x) = x^2 - x + 1 \) is: \[ f^{-1}(y) = \frac{1 + \sqrt{4y - 3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a one to one function, where f(x)=x^(2)-x+1 , then find the inverse of the f(x):

Find the inverse of f(x)={[x, 4

If f(x-1)=x^(2) , then find f(x+1)

If f(x)=x^(2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

If g is inverse of f(x)=x^(3)+x+cos x, then find the value of g'(1)

Let f:[(1)/(2),oo)rarr[(3)/(4),oo), where f(x)=x^(2)-x+1. Find the inverse of f(x) Hence or otherwise solve the equation,x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4))

If f(x)=(-x|x|)/(1+x^3) in R then the inverse of the function f(x) is f^(-1)(x)=

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x), then find the period of f(x)

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x), then find the period of f(x)

DISHA PUBLICATION-FUNCTIONS-Practice Exercises (Foundation Level)
  1. If f(x)=(x+1)/(x-1), x ne 1, find f(f(f(f(f(2)))))

    Text Solution

    |

  2. Let f:(-oo, 1]rarr(-oo, 1] such that f(x)=x(2-x), then f^(-1)(x) is :

    Text Solution

    |

  3. If f(x)=x^(2)-x+1, then find the inverse of the f (x)

    Text Solution

    |

  4. f(x)= y+(1)/(y), where y gt 0. If y increases in value, then f (x)

    Text Solution

    |

  5. For what value of x, x^(2)+10x +11 will give the minimum value? (a)5 ...

    Text Solution

    |

  6. Define the following functions: (i) a "@ "b =(a+b)/(2) (ii) a# b ...

    Text Solution

    |

  7. Define the following functions: (i) a "@"b =(a+b)/(2) (ii) a# b =...

    Text Solution

    |

  8. Find fof " if " f(t)=t//(1+t^(2))^(1//2).

    Text Solution

    |

  9. If 0 lt x lt 1000 and [(x)/(2)] +[(x)/(3)]+[(x)/(5)] =(31)/(30)x, whe...

    Text Solution

    |

  10. f(x)=3x^(2), g(x)=h(x)=3x^(2)+3. The value of f(x) g(x) differ from th...

    Text Solution

    |

  11. If f(x)=|x| and g(x)=[x], then value of fog(-(1)/(4)) +gof (-(1)/(4)) ...

    Text Solution

    |

  12. If f (x) is an even function, then the graph y = f (x) will be symmetr...

    Text Solution

    |

  13. Find the maximum value of the function 1//(x^(2)-3x+2).

    Text Solution

    |

  14. The domain of definition of y=[log(10)((5x-x^(2))/(4))]^(1//2) is

    Text Solution

    |

  15. If f(t) =sqrt(t), g(t)=t//4 and h(t)=4t-8, then the formula for g(f(h(...

    Text Solution

    |

  16. If f(x)=5x^(3) and g(x)=3x^(5), then f(x).g(x) will be

    Text Solution

    |

  17. If f(x)={(1-x",", 0 le x le 2),(x-1",", 2 le x le 4),(1",", 4 le x le ...

    Text Solution

    |

  18. Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)), then fog...

    Text Solution

    |

  19. If x + (1)/(x) ne 0 and x ^(3) + (1)/(x ^(3)) =0 then the value (x + (...

    Text Solution

    |

  20. The graph of y = (x + 3)^(3) + 1 is the graph of y = x^(3) shifted

    Text Solution

    |