Home
Class 14
MATHS
If f(t)=t^(2)+2 and g(t)= (1//t) +2, the...

If `f(t)=t^(2)+2 and g(t)= (1//t) +2`, then for
`t=2, f[g(t)] -g[f(t)]=`?

A

1.2

B

2.6

C

4.34

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to compute \( f[g(t)] - g[f(t)] \) for \( t = 2 \). ### Step 1: Calculate \( g(t) \) Given \( g(t) = \frac{1}{t} + 2 \), we substitute \( t = 2 \): \[ g(2) = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Step 2: Calculate \( f[g(t)] \) Now we need to find \( f(g(2)) = f\left(\frac{5}{2}\right) \). The function \( f(t) = t^2 + 2 \), so: \[ f\left(\frac{5}{2}\right) = \left(\frac{5}{2}\right)^2 + 2 = \frac{25}{4} + 2 = \frac{25}{4} + \frac{8}{4} = \frac{33}{4} \] ### Step 3: Calculate \( f(t) \) Next, we calculate \( f(2) \): \[ f(2) = 2^2 + 2 = 4 + 2 = 6 \] ### Step 4: Calculate \( g[f(t)] \) Now we need to find \( g(f(2)) = g(6) \): \[ g(6) = \frac{1}{6} + 2 = \frac{1}{6} + \frac{12}{6} = \frac{13}{6} \] ### Step 5: Calculate \( f[g(t)] - g[f(t)] \) Now we can find the difference: \[ f[g(2)] - g[f(2)] = \frac{33}{4} - \frac{13}{6} \] ### Step 6: Find a common denominator and compute the difference The least common multiple of 4 and 6 is 12. We convert both fractions: \[ \frac{33}{4} = \frac{33 \times 3}{4 \times 3} = \frac{99}{12} \] \[ \frac{13}{6} = \frac{13 \times 2}{6 \times 2} = \frac{26}{12} \] Now we subtract: \[ \frac{99}{12} - \frac{26}{12} = \frac{99 - 26}{12} = \frac{73}{12} \] ### Final Answer Thus, the final answer is: \[ f[g(2)] - g[f(2)] = \frac{73}{12} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If g(t)=1-4t^(2)," find "g^(')(1) .

If f(t) =sqrt(t), g(t)=t//4 and h(t)=4t-8 , then the formula for g(f(h(t))) will be

Given f(t)=kt +1 and g(t)=3t+2 . If fog=gof , find k.

If A =[(1,-2),(4,5)] and f (t) = t^2 – 3t + 7 then f(A) =

Let f(t)=(t^(2)-1)/(t+3) find f'(1) :

If f(t)=(1-t)/(1+t) then the value of f'(1/t) is

Iff(y)=e^(y),g(y)>0, and F(t)=int_(0)^(t)t(t-y)dt, then F(t)=e^(t)-(1+t)F(t)=te^(t)F(t)=te^(-1)(d)F(t)=1-e^(t)(1+t)

DISHA PUBLICATION-FUNCTIONS-Practice Exercises (Foundation Level)
  1. If f(t) =sqrt(t), g(t)=t//4 and h(t)=4t-8, then the formula for g(f(h(...

    Text Solution

    |

  2. If f(x)=5x^(3) and g(x)=3x^(5), then f(x).g(x) will be

    Text Solution

    |

  3. If f(x)={(1-x",", 0 le x le 2),(x-1",", 2 le x le 4),(1",", 4 le x le ...

    Text Solution

    |

  4. Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)), then fog...

    Text Solution

    |

  5. If x + (1)/(x) ne 0 and x ^(3) + (1)/(x ^(3)) =0 then the value (x + (...

    Text Solution

    |

  6. The graph of y = (x + 3)^(3) + 1 is the graph of y = x^(3) shifted

    Text Solution

    |

  7. Which of the following is not an even function?

    Text Solution

    |

  8. Let f (x) = |x – 2| + |x – 3| + |x – 4| and g(x) = f (x + 1). Then

    Text Solution

    |

  9. Which of the following functions is inverse of itself?

    Text Solution

    |

  10. Find the value of f(f(-2)), if f(x)=(x)/(x+1)

    Text Solution

    |

  11. Find the value of f (f ( f (3))) + f ( f (1)), if f(x)={((x)/(x+1),,...

    Text Solution

    |

  12. If f(x)=log {(1+x)/(1-x)}, then f(x)+f(y) is

    Text Solution

    |

  13. Let f(x) =ax^(2) -b|x|, where a and b are constants. Then at x = 0, f...

    Text Solution

    |

  14. Let f (x) be a function satisfying f (x) f (y) = f (xy) for all real x...

    Text Solution

    |

  15. Which of the following functions is an odd function?

    Text Solution

    |

  16. If f(t)=t^(2)+2 and g(t)= (1//t) +2, then for t=2, f[g(t)] -g[f(t)]...

    Text Solution

    |

  17. Given f(t)=kt +1 and g(t)=3t+2. If fog=gof, find k.

    Text Solution

    |

  18. Find the domain of the definition of the function y=log(10) [(x-5)/...

    Text Solution

    |

  19. If f(x)=e^(x), and g(x)=log(e )x, then value of fog will be

    Text Solution

    |

  20. If f(x)=(x-1)/(x+1), then f(ax) in terms of f(x) is equal to

    Text Solution

    |