Home
Class 14
MATHS
If f(x)=(x-1)/(x+1), then f(ax) in terms...

If `f(x)=(x-1)/(x+1)`, then f(ax) in terms of f(x) is equal to

A

`(f(x)+a)/(1+af(x))`

B

`((a-1) f(x)+a+1)/((a+1)f(x)+a-1)`

C

`((a+1)f(x)+a-1)/((a-1)f(x) +a+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(ax) \) in terms of \( f(x) \), where \( f(x) = \frac{x-1}{x+1} \), we will follow these steps: ### Step 1: Write the expression for \( f(ax) \) We start by substituting \( ax \) into the function \( f \): \[ f(ax) = \frac{ax - 1}{ax + 1} \] ### Step 2: Express \( x \) in terms of \( f(x) \) From the original function, we can express \( x \) in terms of \( f(x) \): \[ f(x) = \frac{x-1}{x+1} \] Cross-multiplying gives: \[ f(x)(x + 1) = x - 1 \] Rearranging this, we get: \[ f(x)x + f(x) = x - 1 \implies f(x)x - x = -1 - f(x) \implies x(f(x) - 1) = -1 - f(x) \] Thus, \[ x = \frac{-1 - f(x)}{f(x) - 1} \] ### Step 3: Substitute \( x \) back into \( f(ax) \) Now we substitute this expression for \( x \) back into our expression for \( f(ax) \): \[ f(ax) = \frac{a\left(\frac{-1 - f(x)}{f(x) - 1}\right) - 1}{a\left(\frac{-1 - f(x)}{f(x) - 1}\right) + 1} \] ### Step 4: Simplify the expression Let's simplify the numerator and denominator separately. **Numerator:** \[ a\left(\frac{-1 - f(x)}{f(x) - 1}\right) - 1 = \frac{-a(1 + f(x)) - (f(x) - 1)}{f(x) - 1} = \frac{-a - af(x) - f(x) + 1}{f(x) - 1} \] This simplifies to: \[ \frac{1 - (a + 1)f(x)}{f(x) - 1} \] **Denominator:** \[ a\left(\frac{-1 - f(x)}{f(x) - 1}\right) + 1 = \frac{-a(1 + f(x)) + (f(x) - 1)}{f(x) - 1} = \frac{-a - af(x) + f(x) - 1}{f(x) - 1} \] This simplifies to: \[ \frac{(1 - a) + (1 - a)f(x)}{f(x) - 1} \] ### Step 5: Combine and simplify Putting it all together: \[ f(ax) = \frac{1 - (a + 1)f(x)}{(1 - a) + (1 - a)f(x)} \] This can be further simplified to: \[ f(ax) = \frac{(1 - (a + 1)f(x))}{(1 - a)(1 + f(x))} \] ### Step 6: Final expression Thus, we can express \( f(ax) \) in terms of \( f(x) \): \[ f(ax) = \frac{(1 - (a + 1)f(x))}{(1 - a)(1 + f(x))} \] ### Conclusion The correct option from the given choices is: \[ \text{Option C: } f(ax) = \frac{(a - 1)f(x) + (a + 1)}{(a + 1)f(x) + (a - 1)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) then f(ax) in term of f(x) is equal to

If f(x)=(x-1)/(x+1), find f(2x) in terms of f(x)

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x)=(x-3)/(x+1) then fl{f(x)} equals

If f(x)=(x+2)/(x-1) then f(y) is equal to

DISHA PUBLICATION-FUNCTIONS-Practice Exercises (Foundation Level)
  1. If f(t) =sqrt(t), g(t)=t//4 and h(t)=4t-8, then the formula for g(f(h(...

    Text Solution

    |

  2. If f(x)=5x^(3) and g(x)=3x^(5), then f(x).g(x) will be

    Text Solution

    |

  3. If f(x)={(1-x",", 0 le x le 2),(x-1",", 2 le x le 4),(1",", 4 le x le ...

    Text Solution

    |

  4. Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)), then fog...

    Text Solution

    |

  5. If x + (1)/(x) ne 0 and x ^(3) + (1)/(x ^(3)) =0 then the value (x + (...

    Text Solution

    |

  6. The graph of y = (x + 3)^(3) + 1 is the graph of y = x^(3) shifted

    Text Solution

    |

  7. Which of the following is not an even function?

    Text Solution

    |

  8. Let f (x) = |x – 2| + |x – 3| + |x – 4| and g(x) = f (x + 1). Then

    Text Solution

    |

  9. Which of the following functions is inverse of itself?

    Text Solution

    |

  10. Find the value of f(f(-2)), if f(x)=(x)/(x+1)

    Text Solution

    |

  11. Find the value of f (f ( f (3))) + f ( f (1)), if f(x)={((x)/(x+1),,...

    Text Solution

    |

  12. If f(x)=log {(1+x)/(1-x)}, then f(x)+f(y) is

    Text Solution

    |

  13. Let f(x) =ax^(2) -b|x|, where a and b are constants. Then at x = 0, f...

    Text Solution

    |

  14. Let f (x) be a function satisfying f (x) f (y) = f (xy) for all real x...

    Text Solution

    |

  15. Which of the following functions is an odd function?

    Text Solution

    |

  16. If f(t)=t^(2)+2 and g(t)= (1//t) +2, then for t=2, f[g(t)] -g[f(t)]...

    Text Solution

    |

  17. Given f(t)=kt +1 and g(t)=3t+2. If fog=gof, find k.

    Text Solution

    |

  18. Find the domain of the definition of the function y=log(10) [(x-5)/...

    Text Solution

    |

  19. If f(x)=e^(x), and g(x)=log(e )x, then value of fog will be

    Text Solution

    |

  20. If f(x)=(x-1)/(x+1), then f(ax) in terms of f(x) is equal to

    Text Solution

    |