Home
Class 14
MATHS
f (x) is any function and f^(-1)(x) is k...

f (x) is any function and `f^(-1)(x)` is known as inverse of `f (x)`, then `f^(-1)(x)` of `f(x)=(1)/(x)+1` is

A

`(1)/(x)-1`

B

`x-1`

C

`(1)/((x-1))`

D

`(1)/(x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) of the function \( f(x) = \frac{1}{x} + 1 \), we will follow these steps: ### Step 1: Set the function equal to \( y \) Let \( f(x) = y \): \[ y = \frac{1}{x} + 1 \] ### Step 2: Solve for \( x \) in terms of \( y \) To find the inverse, we need to express \( x \) in terms of \( y \). Start by isolating \( \frac{1}{x} \): \[ y - 1 = \frac{1}{x} \] Now, take the reciprocal of both sides: \[ x = \frac{1}{y - 1} \] ### Step 3: Write the inverse function Since we have expressed \( x \) in terms of \( y \), we can write the inverse function: \[ f^{-1}(y) = \frac{1}{y - 1} \] ### Step 4: Replace \( y \) with \( x \) To express the inverse function in standard notation, replace \( y \) with \( x \): \[ f^{-1}(x) = \frac{1}{x - 1} \] ### Final Answer Thus, the inverse of the function \( f(x) = \frac{1}{x} + 1 \) is: \[ f^{-1}(x) = \frac{1}{x - 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Foundation Level)|39 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

f (x) is any function and f^(-1)(x) is known as inverse of f(x), then f^(-1)(x) of f(x)= x//(x-1), x ne 1 is

If a function is invertible the graph of its inverse is the mirror image of the function in y=x. If f^(-1)(x) is the inverse function of f(x), then f(f^(-1)(x))=f^(-1)(f(x))=x . The value of (d)/(dx)(f^(-1)(x))" at " x = 9 " for "f(x)=x^(3)-2x^(-3)+10" is "(x gt 0)

Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Let equation f (f ^(-1) (x)) =f ^(-1)(x) has two real roots alpha and beta (with in domain of f(x)), then :

If f(x) is an even function and f'(x) exist for all x then f'(1)+f'(-1) is

If f(x) is a one to one function, where f(x)=x^(2)-x+1 , then find the inverse of the f(x):

Let f(x)=a^(x)(a gt 0) be written as f(x)=f_(1)(x)+f_(2)(x), " where " f_(1)(x) is an function and f_(2)(x) is an odd function. Then f_(1)(x+y)+f_(1)(x-y) equals

If f is any function, then (1)/(2) [ f (x) + f(-x) ] is always

DISHA PUBLICATION-FUNCTIONS-Practice Exercises (Standard Level)
  1. Read the information given below and answer the questions that follow ...

    Text Solution

    |

  2. Let g (x) = max (5 - x, x + 2). The smallest possible value of g (x) i...

    Text Solution

    |

  3. f (x) is any function and f^(-1)(x) is known as inverse of f (x), then...

    Text Solution

    |

  4. A function is defined as f(x)=(25)/((x+5)^(2)), then the value of f(x)

    Text Solution

    |

  5. If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has t...

    Text Solution

    |

  6. The function f(x)="max" {(1-x), (1+x), 2} is equivalent to

    Text Solution

    |

  7. If f(x+y)=f(x)+f(y) -xy -1 for all x, y in R and f(1)=1 then f(n)=n, n...

    Text Solution

    |

  8. If f(s) =(b^(s) +b^(-s))//2, where b gt 0. Find f(s+t) +f(s-t).

    Text Solution

    |

  9. The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2...

    Text Solution

    |

  10. Read the information given below and answer the questions that follow ...

    Text Solution

    |

  11. Read the information given below and answer the questions that follow ...

    Text Solution

    |

  12. Read the information given below and answer the questions that follow ...

    Text Solution

    |

  13. Read the information given below and answer the questions that follow ...

    Text Solution

    |

  14. If f(x)=x^(3) -4x +p, and f (0) and f (1) are of opposite signs, then ...

    Text Solution

    |

  15. Let g (x) be a function such that g (x + 1) + g (x - 1) = g (x) for ev...

    Text Solution

    |

  16. f (x) is any function and f^(-1)(x) is known as inverse of f(x), then ...

    Text Solution

    |

  17. If f (x) is a function satisfying f (x). f (1//x) = f (x) + f (1//x) a...

    Text Solution

    |

  18. Following questions are based on the given information for the followi...

    Text Solution

    |

  19. Following questions are based on the given information for the followi...

    Text Solution

    |

  20. Following questions are based on the given information for the followi...

    Text Solution

    |