Home
Class 14
MATHS
Read the information given below and ans...

Read the information given below and answer the questions that follow :
The following functions have been defined :
`la(x, y, z) ="min" (x+y, y+z)`
`"le" (x,y,z) ="max" (x-y, y-z)`
`ma (x,y,z) =(1//2) ["le"(x,y,z) +la (x,y,z)]`
What is the value of ma (10, 4, le (la (10, 5, 3), 5, 3)) ?

A

`7.0`

B

6.5

C

`8.0`

D

7.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the definitions of the functions provided and compute the required values sequentially. ### Step 1: Calculate `la(10, 5, 3)` The function `la(x, y, z)` is defined as: \[ la(x, y, z) = \text{min}(x+y, y+z) \] Substituting the values \(x = 10\), \(y = 5\), and \(z = 3\): \[ la(10, 5, 3) = \text{min}(10 + 5, 5 + 3) = \text{min}(15, 8) = 8 \] ### Step 2: Calculate `le(la(10, 5, 3), 5, 3)` Now we need to calculate `le(8, 5, 3)` since we found `la(10, 5, 3) = 8`. The function `le(x, y, z)` is defined as: \[ le(x, y, z) = \text{max}(x-y, y-z) \] Substituting the values \(x = 8\), \(y = 5\), and \(z = 3\): \[ le(8, 5, 3) = \text{max}(8 - 5, 5 - 3) = \text{max}(3, 2) = 3 \] ### Step 3: Calculate `ma(10, 4, le(la(10, 5, 3), 5, 3))` Now we need to calculate `ma(10, 4, 3)` since we found `le(8, 5, 3) = 3`. The function `ma(x, y, z)` is defined as: \[ ma(x, y, z) = \frac{1}{2} [le(x, y, z) + la(x, y, z)] \] We need to calculate both `le(10, 4, 3)` and `la(10, 4, 3)`. #### Step 3.1: Calculate `le(10, 4, 3)` Using the definition of `le`: \[ le(10, 4, 3) = \text{max}(10 - 4, 4 - 3) = \text{max}(6, 1) = 6 \] #### Step 3.2: Calculate `la(10, 4, 3)` Using the definition of `la`: \[ la(10, 4, 3) = \text{min}(10 + 4, 4 + 3) = \text{min}(14, 7) = 7 \] ### Step 4: Calculate `ma(10, 4, 3)` Now, substituting the values we calculated: \[ ma(10, 4, 3) = \frac{1}{2} [le(10, 4, 3) + la(10, 4, 3)] = \frac{1}{2} [6 + 7] = \frac{13}{2} = 6.5 \] ### Final Answer The value of `ma(10, 4, le(la(10, 5, 3), 5, 3))` is **6.5**. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

Read the information given below and answer the questions that follow : The following functions have been defined : la(x, y, z) ="min" (x+y, y+z) "le" (x,y,z) ="max" (x-y, y-z) ma (x,y,z) =(1//2) ["le"(x,y,z) +la (x,y,z)] Given that x gt y gt z gt 0 , which of the following is necessarily true?

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) Whgat is the value D(1, 2, C(0, 1, 2)) ?

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) What is the value of A(2, 3, 4)+B(2, 3, 4) ?

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) The value of C(1, 2, 3) is :