Home
Class 14
MATHS
If F(x)={((x-10[(x)/(10)]).10^([log(10)x...

If `F(x)={((x-10[(x)/(10)]).10^([log_(10)x])+F([(x)/(10)])",","if "x ne 0),(0",","if "x=0):}`
where [ x ] stands for the greatest integer not exceeding ' x ', then F(7752) =

A

2222

B

7777

C

7752

D

2775

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( F(x) \) defined as follows: \[ F(x) = \begin{cases} x - 10 \left[ \frac{x}{10} \right] \cdot 10^{\log_{10} x} + F\left[ \frac{x}{10} \right] & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We are tasked with finding \( F(7752) \). ### Step-by-Step Solution: 1. **Identify the case for \( F(7752) \)**: Since \( 7752 \neq 0 \), we use the first case of the function definition. \[ F(7752) = 7752 - 10 \left[ \frac{7752}{10} \right] \cdot 10^{\log_{10} 7752} + F\left[ \frac{7752}{10} \right] \] 2. **Calculate \( \left[ \frac{7752}{10} \right] \)**: \[ \frac{7752}{10} = 775.2 \implies \left[ 775.2 \right] = 775 \] 3. **Calculate \( 10^{\log_{10} 7752} \)**: By the properties of logarithms, \( 10^{\log_{10} x} = x \). \[ 10^{\log_{10} 7752} = 7752 \] 4. **Substitute the values back into the function**: \[ F(7752) = 7752 - 10 \cdot 775 \cdot 7752 + F(775) \] 5. **Calculate \( 10 \cdot 775 \cdot 7752 \)**: \[ 10 \cdot 775 \cdot 7752 = 77500 \cdot 7752 \] 6. **Calculate \( F(775) \)**: Since \( 775 \neq 0 \): \[ F(775) = 775 - 10 \left[ \frac{775}{10} \right] \cdot 10^{\log_{10} 775} + F\left[ \frac{775}{10} \right] \] Calculate \( \left[ \frac{775}{10} \right] \): \[ \frac{775}{10} = 77.5 \implies \left[ 77.5 \right] = 77 \] Calculate \( 10^{\log_{10} 775} \): \[ 10^{\log_{10} 775} = 775 \] Substitute back: \[ F(775) = 775 - 10 \cdot 77 \cdot 775 + F(77) \] 7. **Calculate \( F(77) \)**: Since \( 77 \neq 0 \): \[ F(77) = 77 - 10 \left[ \frac{77}{10} \right] \cdot 10^{\log_{10} 77} + F\left[ \frac{77}{10} \right] \] Calculate \( \left[ \frac{77}{10} \right] \): \[ \frac{77}{10} = 7.7 \implies \left[ 7.7 \right] = 7 \] Calculate \( 10^{\log_{10} 77} \): \[ 10^{\log_{10} 77} = 77 \] Substitute back: \[ F(77) = 77 - 10 \cdot 7 \cdot 77 + F(7) \] 8. **Calculate \( F(7) \)**: Since \( 7 \neq 0 \): \[ F(7) = 7 - 10 \left[ \frac{7}{10} \right] \cdot 10^{\log_{10} 7} + F(0) \] Calculate \( \left[ \frac{7}{10} \right] \): \[ \frac{7}{10} = 0.7 \implies \left[ 0.7 \right] = 0 \] Calculate \( 10^{\log_{10} 7} \): \[ 10^{\log_{10} 7} = 7 \] Substitute back: \[ F(7) = 7 - 0 + 0 = 7 \] 9. **Substituting back to find \( F(77) \)**: \[ F(77) = 77 - 10 \cdot 7 \cdot 77 + 7 = 77 - 770 + 7 = -686 \] 10. **Substituting back to find \( F(775) \)**: \[ F(775) = 775 - 10 \cdot 77 \cdot 775 - 686 \] Calculate \( 10 \cdot 77 \cdot 775 \): \[ 10 \cdot 77 \cdot 775 = 59750 \] Substitute back: \[ F(775) = 775 - 59750 - 686 = -58661 \] 11. **Finally, substitute back to find \( F(7752) \)**: \[ F(7752) = 7752 - 59750 - 58661 \] Calculate: \[ F(7752) = 7752 - 59750 - 58661 = -115659 \] Thus, the final answer is: \[ \boxed{-115659} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|30 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

In x epsilon(0,1),f(x)=[3x^(2)+1] , where [x] stands for the greatest integer not exceeding x is:

If f(x)={((sin(1+[x]))/([x])"for"[x] ne 0,),(0" for " [x]-0,):} where [x] denotes the greatest integer not exceeding x, then lim_(xrarr0^-)f(x)=

int_(4)^(10)([x-4]+[10-x])dx= (where [x] is the largest integer not exceeding x)

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is