Home
Class 14
MATHS
If f(x)=(2^(x)+2^(-x))/(2), then f(x+y)....

If `f(x)=(2^(x)+2^(-x))/(2)`, then `f(x+y).f(x-y)` is equal to

A

`(1)/(2) [f(x+y) +f(x-y)]`

B

`(1)/(2)[f(2x) +f(2y)]`

C

`(1)/(2) [f(x+y) .f(x-y)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x+y) \cdot f(x-y) \) given that \( f(x) = \frac{2^x + 2^{-x}}{2} \). ### Step-by-Step Solution: 1. **Calculate \( f(x+y) \)**: \[ f(x+y) = \frac{2^{x+y} + 2^{-(x+y)}}{2} \] 2. **Calculate \( f(x-y) \)**: \[ f(x-y) = \frac{2^{x-y} + 2^{-(x-y)}}{2} \] 3. **Multiply \( f(x+y) \) and \( f(x-y) \)**: \[ f(x+y) \cdot f(x-y) = \left(\frac{2^{x+y} + 2^{-(x+y)}}{2}\right) \cdot \left(\frac{2^{x-y} + 2^{-(x-y)}}{2}\right) \] \[ = \frac{(2^{x+y} + 2^{-(x+y)})(2^{x-y} + 2^{-(x-y)})}{4} \] 4. **Expand the product**: \[ = \frac{2^{(x+y) + (x-y)} + 2^{(x+y) - (x-y)} + 2^{-(x+y) + (x-y)} + 2^{-(x+y) - (x-y)}}{4} \] \[ = \frac{2^{2x} + 2^{2y} + 2^{-2y} + 2^{-2x}}{4} \] 5. **Rearranging the expression**: \[ = \frac{2^{2x} + 2^{-2x} + 2^{2y} + 2^{-2y}}{4} \] 6. **Recognize the function form**: Notice that: \[ f(2x) = \frac{2^{2x} + 2^{-2x}}{2} \] and \[ f(2y) = \frac{2^{2y} + 2^{-2y}}{2} \] 7. **Final expression**: Therefore, we can express: \[ f(x+y) \cdot f(x-y) = \frac{1}{4} \left( f(2x) + f(2y) \right) \] ### Conclusion: Thus, we have: \[ f(x+y) \cdot f(x-y) = \frac{1}{4} \left( f(2x) + f(2y) \right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2^(x)+2^(-x))/(2), then f(x+y)f(x-y) is equals to (1)/(2){f(2x)+f(2y)}(b)(1)/(2){f(2x)-f(2y)}(c)(1)/(4){f(2x)+f(2y)}(1)/(4){f(2x)-f(2y)}

If f(x)=(x+2)/(x-1) then f(y) is equal to

If f(x)=(a^(x)+a^(-x))/(2) and f(x+y)+f(x-y)=kf(x)f(y) then k=

Given the function f (x) =(a ^(x) + a ^(-x))/(2), a gt 2, then f (x+y) + f(x -y) =

If f(x+2y,x-2y)=xy then f(x,y) is equal to

If x^(y) = e^(2(x-y)), " then" f'(x) is equal to

" If the function "f:R rarr R" defined by "f(x)=(3^(x)+3^(-x))/(2)," then show that "f(x+y)+f(x-y)=2f(x)f(y)"

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to