Home
Class 14
MATHS
A polynomial function f (x) satisfies f(...

A polynomial function f (x) satisfies `f(x) f((1)/(x))=f(x)=f((1)/(x))`. If f(10) =1001, then what is the value of f(20)?

A

2002

B

8004

C

8001

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given polynomial function \( f(x) \) that satisfies the equation: \[ f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \] We are also given that \( f(10) = 1001 \) and we need to find \( f(20) \). ### Step 1: Analyze the functional equation We can rewrite the functional equation as: \[ f(x) f\left(\frac{1}{x}\right) - f(x) - f\left(\frac{1}{x}\right) = 0 \] This suggests that \( f(x) \) and \( f\left(\frac{1}{x}\right) \) might be related in a specific way. ### Step 2: Consider a general form for \( f(x) \) Based on the analysis, we can assume a general form for \( f(x) \): \[ f(x) = 1 + k x^n \] where \( k \) is a constant and \( n \) is a positive integer. ### Step 3: Substitute \( f(x) \) into the functional equation Substituting \( f(x) \) and \( f\left(\frac{1}{x}\right) \) into the equation gives: \[ (1 + k x^n)(1 + k \frac{1}{x^n}) = (1 + k x^n) + (1 + k \frac{1}{x^n}) \] Expanding both sides: \[ 1 + k x^n + k \frac{1}{x^n} + k^2 = 1 + k x^n + 1 + k \frac{1}{x^n} \] This simplifies to: \[ 1 + k x^n + k \frac{1}{x^n} + k^2 = 2 + k x^n + k \frac{1}{x^n} \] ### Step 4: Solve for \( k \) From the equation, we can see that: \[ k^2 = 1 \] Thus, \( k = 1 \) or \( k = -1 \). ### Step 5: Determine the correct value of \( k \) Since we know \( f(10) = 1001 \), we can substitute \( x = 10 \) into our general form: 1. If \( k = 1 \): \[ f(10) = 1 + 10^n = 1001 \implies 10^n = 1000 \implies n = 3 \] Therefore, \( f(x) = 1 + x^3 \). 2. If \( k = -1 \): \[ f(10) = 1 - 10^n = 1001 \implies -10^n = 1000 \implies n \text{ is not valid.} \] Thus, we conclude that \( k = 1 \) and \( n = 3 \). ### Step 6: Find \( f(20) \) Now we can find \( f(20) \): \[ f(20) = 1 + 20^3 = 1 + 8000 = 8001 \] ### Final Answer: Thus, the value of \( f(20) \) is: \[ \boxed{8001} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

A polynomial function f(x) satisfies f(x)f((1)/(x))-2f(x)+2f((1)/(x));x!=0 and f(2)=18 ,then f(3) is equal to

If f(x) is a polynomial function satisfying f(x)*f((1)/(x))=f(x)+f((1)/(x)) and f(4)=65, then find f(6)

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) for all x in R,x!=0. If f(3)=-26, then f(4)=

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(xy)AA x,y in R and if f(2)=5, then find the value of f(f(2))

If a function satisfies f'(x)=f(x) ,then f(x)=

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is

For x in R-{1}, the function f(x) satisfies f(x)+2f((1)/(1-x))=x. Find f(2)

Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1)/(x))" for all "xne0. If f(5)=126" and a,b,c are in G.P., then"f'(a),f'(b),f'(c) are in