Home
Class 14
MATHS
If f(x)=2x^(2)+6x-1, then the value of ...

If `f(x)=2x^(2)+6x-1`, then the value of `(f((3)/(4))+1)/(f((3)/(4))-1)` is

A

`11//13`

B

`35//3`

C

`45//29`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((f(\frac{3}{4}) + 1) / (f(\frac{3}{4}) - 1)\) given the function \(f(x) = 2x^2 + 6x - 1\). ### Step 1: Calculate \(f(\frac{3}{4})\) We start by substituting \(\frac{3}{4}\) into the function \(f(x)\): \[ f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 + 6\left(\frac{3}{4}\right) - 1 \] ### Step 2: Simplify \(\left(\frac{3}{4}\right)^2\) Calculating \(\left(\frac{3}{4}\right)^2\): \[ \left(\frac{3}{4}\right)^2 = \frac{9}{16} \] ### Step 3: Substitute back into the function Now substitute \(\frac{9}{16}\) back into the function: \[ f\left(\frac{3}{4}\right) = 2 \cdot \frac{9}{16} + 6 \cdot \frac{3}{4} - 1 \] ### Step 4: Calculate \(2 \cdot \frac{9}{16}\) Calculating \(2 \cdot \frac{9}{16}\): \[ 2 \cdot \frac{9}{16} = \frac{18}{16} = \frac{9}{8} \] ### Step 5: Calculate \(6 \cdot \frac{3}{4}\) Calculating \(6 \cdot \frac{3}{4}\): \[ 6 \cdot \frac{3}{4} = \frac{18}{4} = \frac{9}{2} \] ### Step 6: Combine all parts Now combine all parts: \[ f\left(\frac{3}{4}\right) = \frac{9}{8} + \frac{9}{2} - 1 \] ### Step 7: Convert \(\frac{9}{2}\) and \(1\) to have a common denominator Convert \(\frac{9}{2}\) and \(1\) to have a common denominator of 8: \[ \frac{9}{2} = \frac{36}{8}, \quad 1 = \frac{8}{8} \] ### Step 8: Combine fractions Now combine: \[ f\left(\frac{3}{4}\right) = \frac{9}{8} + \frac{36}{8} - \frac{8}{8} = \frac{9 + 36 - 8}{8} = \frac{37}{8} \] ### Step 9: Substitute \(f(\frac{3}{4})\) into the expression Now substitute \(f(\frac{3}{4})\) into the expression: \[ \frac{f\left(\frac{3}{4}\right) + 1}{f\left(\frac{3}{4}\right) - 1} = \frac{\frac{37}{8} + 1}{\frac{37}{8} - 1} \] ### Step 10: Simplify the numerator and denominator Calculate the numerator: \[ \frac{37}{8} + 1 = \frac{37}{8} + \frac{8}{8} = \frac{45}{8} \] Calculate the denominator: \[ \frac{37}{8} - 1 = \frac{37}{8} - \frac{8}{8} = \frac{29}{8} \] ### Step 11: Final calculation Now we can simplify the expression: \[ \frac{\frac{45}{8}}{\frac{29}{8}} = \frac{45}{29} \] Thus, the final answer is: \[ \frac{45}{29} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos(log x), then value of f(x)f(4)-(1)/(2){f((x)/(4))+f(4x)} is (a) 1(b)-1(c)0(d)+-1

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

If f(x) = f(1 - x) and f(x) is differentiable are every real value of x then the value of f' ((1)/(2)) + f' ((1)/(4)) + f' ((3)/(4)) is _____

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

Letf(x)=x^(3)-(3x^(2))/(2)+x+(1)/(4) Then the value of (int_((1)/(4))^((3)/(4))f(f(x))dx)^(-1) is

If f(x)=(1-sin2x+cos2x)/(2cos2x), then the value of f(16^(0))*f(29^(0)) is (1)/(2)(1)/(4)1(3)/(4)

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

Let f(x)=x^(3)-3(x^(2))/(2)+x+(1)/(4) find the value of (int_((1)/(4))^((3)/(4))f(f(x))dx)^(-1)

Let f:W rarr W be a given function satisfying f(x)=f(x-1)+f(x-2) for x<=2. If f(0)=0 and f(1)=1, ther find the value of f(2)+f(3)+f(4)+f(5)+f(6)

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals