Home
Class 14
MATHS
If f(x)=x^(3) and g(x)=x^(2)//5, then f(...

If `f(x)=x^(3) and g(x)=x^(2)//5`, then `f(x)-g(x)` will be

A

Odd function

B

Even function

C

Neither (a) nor (b)

D

Both (a) and (b)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( f(x) - g(x) \) and determine whether this expression is an even function, an odd function, or neither. ### Step-by-step Solution: 1. **Define the Functions**: We have two functions: \[ f(x) = x^3 \] \[ g(x) = \frac{x^2}{5} \] 2. **Find \( f(x) - g(x) \)**: We need to compute: \[ f(x) - g(x) = x^3 - \frac{x^2}{5} \] 3. **Check for Evenness or Oddness**: To determine if the function \( f(x) - g(x) \) is even, odd, or neither, we will evaluate \( f(-x) - g(-x) \). - Calculate \( f(-x) \): \[ f(-x) = (-x)^3 = -x^3 \] - Calculate \( g(-x) \): \[ g(-x) = \frac{(-x)^2}{5} = \frac{x^2}{5} \] - Now, compute \( f(-x) - g(-x) \): \[ f(-x) - g(-x) = -x^3 - \frac{x^2}{5} \] 4. **Compare with \( -(f(x) - g(x)) \)**: We need to check if: \[ f(-x) - g(-x) = -(f(x) - g(x)) \] First, calculate \( -(f(x) - g(x)) \): \[ -(f(x) - g(x)) = -\left(x^3 - \frac{x^2}{5}\right) = -x^3 + \frac{x^2}{5} \] 5. **Final Comparison**: Now we compare: \[ f(-x) - g(-x) = -x^3 - \frac{x^2}{5} \] with: \[ -(f(x) - g(x)) = -x^3 + \frac{x^2}{5} \] Since \( f(-x) - g(-x) \) is not equal to either \( f(x) - g(x) \) or \( -(f(x) - g(x)) \), we conclude that the function is neither even nor odd. ### Conclusion: Thus, the final answer is that \( f(x) - g(x) \) is **neither an even function nor an odd function**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=5x^(3) and g(x)=3x^(5) , then f(x).g(x) will be

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=2x+3 and g(x)=9x+6 , then find g[f(x)]-f[g(x)]

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If f (x)=x ^(2) , g (x) =5x -6, then g [f (x)]=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If f(x)=(x-2)^2 and g(x) =3x-3 then: (f@g)(2)=

If g(x)=x^(2)+x-2 and (1)/(2)g(f(x))=2x^(2)-5x+2, then f(x) is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to